3.798 \(\int (a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x)) \sqrt{c-i c \tan (e+f x)} \, dx\)

Optimal. Leaf size=160 \[ -\frac{a^{3/2} \sqrt{c} (B+2 i A) \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f}+\frac{a (B+2 i A) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f} \]

[Out]

-((a^(3/2)*((2*I)*A + B)*Sqrt[c]*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x
]])])/f) + (a*((2*I)*A + B)*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f) + (B*(a + I*a*Tan[e +
 f*x])^(3/2)*Sqrt[c - I*c*Tan[e + f*x]])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.261031, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {3588, 80, 50, 63, 217, 203} \[ -\frac{a^{3/2} \sqrt{c} (B+2 i A) \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f}+\frac{a (B+2 i A) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

-((a^(3/2)*((2*I)*A + B)*Sqrt[c]*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x
]])])/f) + (a*((2*I)*A + B)*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f) + (B*(a + I*a*Tan[e +
 f*x])^(3/2)*Sqrt[c - I*c*Tan[e + f*x]])/(2*f)

Rule 3588

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int (a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x)) \sqrt{c-i c \tan (e+f x)} \, dx &=\frac{(a c) \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x} (A+B x)}{\sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{(a (2 A-i B) c) \operatorname{Subst}\left (\int \frac{\sqrt{a+i a x}}{\sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{a (2 i A+B) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{\left (a^2 (2 A-i B) c\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x} \sqrt{c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{a (2 i A+B) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{(a (2 i A+B) c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2 c-\frac{c x^2}{a}}} \, dx,x,\sqrt{a+i a \tan (e+f x)}\right )}{f}\\ &=\frac{a (2 i A+B) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f}-\frac{(a (2 i A+B) c) \operatorname{Subst}\left (\int \frac{1}{1+\frac{c x^2}{a}} \, dx,x,\frac{\sqrt{a+i a \tan (e+f x)}}{\sqrt{c-i c \tan (e+f x)}}\right )}{f}\\ &=-\frac{a^{3/2} (2 i A+B) \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{c} \sqrt{a+i a \tan (e+f x)}}{\sqrt{a} \sqrt{c-i c \tan (e+f x)}}\right )}{f}+\frac{a (2 i A+B) \sqrt{a+i a \tan (e+f x)} \sqrt{c-i c \tan (e+f x)}}{2 f}+\frac{B (a+i a \tan (e+f x))^{3/2} \sqrt{c-i c \tan (e+f x)}}{2 f}\\ \end{align*}

Mathematica [A]  time = 6.4519, size = 220, normalized size = 1.38 \[ \frac{(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x)) \left (\frac{\cos (e) (\tan (e)+i) \sqrt{\sec (e+f x)} \sqrt{c-i c \tan (e+f x)} (2 A+B \tan (e+f x)-2 i B)}{2 \cos (f x)+2 i \sin (f x)}-\frac{i c (2 A-i B) e^{-2 i (e+f x)} \sqrt{\frac{e^{i (e+f x)}}{1+e^{2 i (e+f x)}}} \tan ^{-1}\left (e^{i (e+f x)}\right )}{\sqrt{\frac{c}{1+e^{2 i (e+f x)}}}}\right )}{f \sec ^{\frac{5}{2}}(e+f x) (A \cos (e+f x)+B \sin (e+f x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]],x]

[Out]

((a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x])*(((-I)*(2*A - I*B)*c*Sqrt[E^(I*(e + f*x))/(1 + E^((2*I)*(e
+ f*x)))]*ArcTan[E^(I*(e + f*x))])/(E^((2*I)*(e + f*x))*Sqrt[c/(1 + E^((2*I)*(e + f*x)))]) + (Cos[e]*Sqrt[Sec[
e + f*x]]*(I + Tan[e])*(2*A - (2*I)*B + B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]])/(2*Cos[f*x] + (2*I)*Sin[f*
x])))/(f*Sec[e + f*x]^(5/2)*(A*Cos[e + f*x] + B*Sin[e + f*x]))

________________________________________________________________________________________

Maple [A]  time = 0.098, size = 223, normalized size = 1.4 \begin{align*}{\frac{a}{2\,f}\sqrt{-c \left ( -1+i\tan \left ( fx+e \right ) \right ) }\sqrt{a \left ( 1+i\tan \left ( fx+e \right ) \right ) } \left ( iB\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\tan \left ( fx+e \right ) -iB\ln \left ({ \left ( ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ac}}}} \right ) ac+2\,iA\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }+2\,A\ln \left ({\frac{ac\tan \left ( fx+e \right ) +\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }\sqrt{ac}}{\sqrt{ac}}} \right ) ac+2\,B\sqrt{ac}\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) } \right ){\frac{1}{\sqrt{ac \left ( 1+ \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e)),x)

[Out]

1/2/f*(-c*(-1+I*tan(f*x+e)))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)*a*(I*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*
tan(f*x+e)-I*B*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*c+2*I*A*(a*c)^(1/2)
*(a*c*(1+tan(f*x+e)^2))^(1/2)+2*A*ln((a*c*tan(f*x+e)+(a*c*(1+tan(f*x+e)^2))^(1/2)*(a*c)^(1/2))/(a*c)^(1/2))*a*
c+2*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.2869, size = 1038, normalized size = 6.49 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e)),x, algorithm="maxima")

[Out]

((32*A - 48*I*B)*a*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (32*A - 16*I*B)*a*cos(1/2*arctan2(si
n(2*f*x + 2*e), cos(2*f*x + 2*e))) + 16*(2*I*A + 3*B)*a*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) +
 16*(2*I*A + B)*a*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - ((16*A - 8*I*B)*a*cos(4*f*x + 4*e) +
(32*A - 16*I*B)*a*cos(2*f*x + 2*e) - 8*(-2*I*A - B)*a*sin(4*f*x + 4*e) - 16*(-2*I*A - B)*a*sin(2*f*x + 2*e) +
(16*A - 8*I*B)*a)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*
e), cos(2*f*x + 2*e))) + 1) - ((16*A - 8*I*B)*a*cos(4*f*x + 4*e) + (32*A - 16*I*B)*a*cos(2*f*x + 2*e) - 8*(-2*
I*A - B)*a*sin(4*f*x + 4*e) - 16*(-2*I*A - B)*a*sin(2*f*x + 2*e) + (16*A - 8*I*B)*a)*arctan2(cos(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + (4*(-2*I*A -
 B)*a*cos(4*f*x + 4*e) + 8*(-2*I*A - B)*a*cos(2*f*x + 2*e) + (8*A - 4*I*B)*a*sin(4*f*x + 4*e) + (16*A - 8*I*B)
*a*sin(2*f*x + 2*e) + 4*(-2*I*A - B)*a)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*a
rctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) +
(4*(2*I*A + B)*a*cos(4*f*x + 4*e) + 8*(2*I*A + B)*a*cos(2*f*x + 2*e) - (8*A - 4*I*B)*a*sin(4*f*x + 4*e) - (16*
A - 8*I*B)*a*sin(2*f*x + 2*e) + 4*(2*I*A + B)*a)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 +
sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))
) + 1))*sqrt(a)*sqrt(c)/(f*(-16*I*cos(4*f*x + 4*e) - 32*I*cos(2*f*x + 2*e) + 16*sin(4*f*x + 4*e) + 32*sin(2*f*
x + 2*e) - 16*I))

________________________________________________________________________________________

Fricas [B]  time = 1.56229, size = 1165, normalized size = 7.28 \begin{align*} \frac{2 \,{\left ({\left (4 i \, A + 6 \, B\right )} a e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (4 i \, A + 2 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} + \sqrt{\frac{{\left (4 \, A^{2} - 4 i \, A B - B^{2}\right )} a^{3} c}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac{2 \,{\left ({\left ({\left (8 i \, A + 4 \, B\right )} a e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (8 i \, A + 4 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} + 2 \, \sqrt{\frac{{\left (4 \, A^{2} - 4 i \, A B - B^{2}\right )} a^{3} c}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (2 i \, A + B\right )} a e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (2 i \, A + B\right )} a}\right ) - \sqrt{\frac{{\left (4 \, A^{2} - 4 i \, A B - B^{2}\right )} a^{3} c}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (\frac{2 \,{\left ({\left ({\left (8 i \, A + 4 \, B\right )} a e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (8 i \, A + 4 \, B\right )} a\right )} \sqrt{\frac{a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt{\frac{c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} e^{\left (i \, f x + i \, e\right )} - 2 \, \sqrt{\frac{{\left (4 \, A^{2} - 4 i \, A B - B^{2}\right )} a^{3} c}{f^{2}}}{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (2 i \, A + B\right )} a e^{\left (2 i \, f x + 2 i \, e\right )} +{\left (2 i \, A + B\right )} a}\right )}{4 \,{\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e)),x, algorithm="fricas")

[Out]

1/4*(2*((4*I*A + 6*B)*a*e^(2*I*f*x + 2*I*e) + (4*I*A + 2*B)*a)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*
I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) + sqrt((4*A^2 - 4*I*A*B - B^2)*a^3*c/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*log
(2*(((8*I*A + 4*B)*a*e^(2*I*f*x + 2*I*e) + (8*I*A + 4*B)*a)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f
*x + 2*I*e) + 1))*e^(I*f*x + I*e) + 2*sqrt((4*A^2 - 4*I*A*B - B^2)*a^3*c/f^2)*(f*e^(2*I*f*x + 2*I*e) - f))/((2
*I*A + B)*a*e^(2*I*f*x + 2*I*e) + (2*I*A + B)*a)) - sqrt((4*A^2 - 4*I*A*B - B^2)*a^3*c/f^2)*(f*e^(2*I*f*x + 2*
I*e) + f)*log(2*(((8*I*A + 4*B)*a*e^(2*I*f*x + 2*I*e) + (8*I*A + 4*B)*a)*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqr
t(c/(e^(2*I*f*x + 2*I*e) + 1))*e^(I*f*x + I*e) - 2*sqrt((4*A^2 - 4*I*A*B - B^2)*a^3*c/f^2)*(f*e^(2*I*f*x + 2*I
*e) - f))/((2*I*A + B)*a*e^(2*I*f*x + 2*I*e) + (2*I*A + B)*a)))/(f*e^(2*I*f*x + 2*I*e) + f)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))**(1/2)*(a+I*a*tan(f*x+e))**(3/2)*(A+B*tan(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (f x + e\right ) + A\right )}{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac{3}{2}} \sqrt{-i \, c \tan \left (f x + e\right ) + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)*(a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(I*a*tan(f*x + e) + a)^(3/2)*sqrt(-I*c*tan(f*x + e) + c), x)